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Let 3' (ao) =# 0. The condition of positive definiteness of the quadratic form bZ/1 on 
the linear manifold 61, = 0: 

(B cos q cos a0)6Q, f (B sin cp cos aa)&& + 2~~ sin a, ha=- 0 

leads to the single inequality 

b*ca‘ + 3 [Pz’ (a@)]* + bc,*Pz’ (ao) > 0 

Thus, for sufficiently large values of the angular velocity, the manifold Z, of the 
stationary motions of the body is conditionally stable relative to these deviations. 
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SHOCK INTERACTION BETWEEN A CONCENTRATED OBJECT AND A 
ONE-DIMENSIONAL ELASTIC SYSTEM* 

S.B. MAULNOV and G.A. UTKIN 

A physical interpretation of the results obtained earlier**(*fhalanov S.B. 
and Utkin G.A. Formulation of a problem of shock interaction between a 
concentrated object and a one-dimensional elastic system. Gor'kii, 1986. 
Dep. at VINITI 5.12.86, 8304-B86.) for the shock interaction of a homo- 
geneous elastic system with a concentrated object is given in the form of 
the laws of variation of the energy and moments. The impact of a material 
point against a string is considered as an example, and the dependence of 
the time of contact and the coefficient sf restitution on the parameters 
of the problem is given. 

The problem of the correct conditions at the point of contact and of 
relations holding at the beginning and end of contact were solved in /l, 
J2/, where additional geometrical and physical concepts flaws of conser- 
vation of energy, mcmentum, etc.1 were brought in. The study of a 

*Prikl.~atem.~ekAan.,52,1,42-46,1988 
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coordinated continuous interaction based on Hamilton's principle* 
(*Vesnitskii. A.I., Krysov S.V. and Utkin G.A., Formulating the boundary 
value problems of the dynamics of elastic systems based on the variational 
Hamilton principle. Ucheb. posobiye, Gor'kii, Gor'k. Un-t, 1983. 
Vesnitskii A.I., Kaplan L.E., Krysov S.V. and Utkin G.A., Selfcoordinated 
problems of the dynamics of one-dimensional systems with moving loads and 
clamps. Preprint 159, Gor'kii, Nauchn. - Issled. Radiofix. In-t, Akad. 
Nauk SSSR, 1982.) made it possible to solve completely the problem of the 
correct conditions at the point of contact without bringing in additional 
considerations. The use of the same approach in the problem with a finite 
time of contact, gave relations which were valid at the initial and final 
instant of the contact. 

1. Let us consider a mechanical system consisting of an elastic directrix (one-dimen- 
sional system) and a concentrated object. The concentrated object may move along the directrix 
over a certain period (the time of contact). Thus we arrive at the problem of describing 
their coordinate motion and of determining the initial and final instant of the period of 
contact. 

Let 2 be the coordinate along the one-dimensional system, t is the time, D - ((2, t): 
a,(~< b, t, <t<h} is a rectangular region in the plane z&t, and t, (tl Q ta & t, < tc) is 
the initial and final instant of the contact respectively. We assume that the law of motion 
of the load is described by some generalized coordinate z(t) and vector functions uo(t),v, (t). 
The function z and all components of the vector functions ug and vO are continuous on [tl, t.1 
and twice continuously differentiable on (tk,&+J. k=i, 2,3. The curve z = z (t). t E [t,, t,l and 
the straight lines t = t, and t = t* divide the region D into two parts Dt, I = i,. . .( 4. 
The law of motion of the distributed system is described by a set of vector functions of 
generalized coordinates ~(2, t),w(z. t), continuous in D , and twice continuously differentiable 
in Dl, i = i,. . ., 4. In addition, the derivatives of the functions u(z,t) and w (r. t) may 
become discontinuous due to the difference between the velocities of the load and of the one- 
dimensional object at the initial instant of contact. 

Let L'(z, f, u,uI,Utrw, W,.wt) be the density of the Lagrange function of the distributed 
system, and let OL (t,z;z',u,,,~', v,,, v,,') be the Lagrange function of the load where L, OL are 
twice continuously differentiable functions of their arguments. Moreover, at the time of 
contact the relation ur, (t) = u (2 (t), t) holds. 

Then the relations minimizing the acticn functional can be written, in accordance with 
the Hamilton's principle, in the form 

L,, -&L,---&J&=0 (1.U 

hr-&L, -;&=o; bt)eD,, i=i,...,4 

[u (2, f)l = 0, [w (2, t)l = 0 (1.2) 

OL, - 4 OLz. =IL - (u.w L., - Z’LU,,) - (wt, I-, - Z’L”,)) 

“r, = & OL”; = [4 - Z’L”,] 

IL, - z'L,,l = 0, OL,, - + OLv; = 0 

OL,-~~L,.=o, oL,+L~.=o 

OLv,- &.:= 0, t E IfI, t,) u (tS, t.1 

(1.3) 

(I.41 

((L - Fur* u:) - (L”,, WC)) -I- OL - OL*.z’ - (1.5) 
(Ok.9 Ug.) - (oLV;, v,‘)) = 0 

(Lg = 0, {Lw,) = 0, wIJ,, u,) + (h,, w*) )=z 0 

P&4 = 0. (OL,;) = 0, (OL,.) = 0 

where 

IA (I, t)l = A (z (t) + 0, t) - A (z (t) - 0, t). t E It,, t,l 

{A (t. t)) = A (t, ft + 0) - A (z, tk - 0) 
= E Ia, 2 0rN U (2 (tr), bl, k = 2, 3 

<AW)>=&,l)ds 
a 

It is clear that relations (1.1) specify the differential relations for a distributed 
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system, while expressions (1.2) and (1.3) represent the conditions of coupling when themotion 
is coordinated. Relations (1.4) give the differential equations of motion of the load before 
and after the contact, and (1.5) specify the coupling conditions at the initial and final 
instant of the contact. 

2. Let us denote by /3/ p(s, t) the n-l-m + l-dimensional vector whose components 
represent the density of the generalized momentum corresponding to the generalized coordinates 

" (2, f) and w(z, f) of the distributed system. We shall write this vector, the density of 
the external force and the internal potential force at the cross-section 2 in the form 

p (2,1) : .- (Lq, . . . , Lq, Lq, . . . , L,lm, 0, . . . (0) 

Q(x, t)=(L,t, . . ., L,,,x, L,), . . ., L,‘,m, 0, . . ., 0) 

T(z, t) = (L,+. . . . , Luxn, L,+~r. . . , I&m, 0, . . . ,O) 

Using expressions (1.11, we can confirm that the following relations hold: 

T+ (2, 6 - L - (Ly 4) - Lx, w*) 

h (5, 4 =--L + vet* ut) + GQ, 9) 

s (x9 1) = (-h,, 4) -t (Lx, 5) 

where p* is the density of the wave momentum, T* is the wave pressure flux, Q' (x, t) = L 
is the wave pressure force density governed by the distributed reflection, h is the density 
of generalized energy, S is the wave energy flux and N (x, t) =- LI is the source strength 
density affecting the parameters of the distributed system. 

Similarly, we can represent the total generalized momentum of the load in the form of 
a n + m + l-dimensional vector 

PO (1) -y ("L".? . . . 1 OLU,.“, 0, . . . ( 0, OLq*, . . . , OL&.I) 

and the generalized potential force by 

QO (‘) -7 (“L,<*. . . . , “L,,n, 0,. . . (0, OLs,l, . . . , ‘L,,r) 

Taking this into account, we can obtain, from relations (1.3) and (1.4), the differential 
laws governing the change of momentum and load energy during the contact 

-+=[T- z'p] + Qa, $$ =[i"* - z’p+j + Qo+ 

dh,/dt :T [S - z’h] + No 

and outside the time of contact 

Here p,* (t)= OL,. is the load momentum, QO*(l)= OL, is the potential force, Aa (t) = 
-"La + O.&Z + (Ok., lb.) + (OLY... vo') is the total energy of the load and No (t) =--OL, is the 
strength of the forces affecting the load parameters. At the initial and final instant of 
the contact the momenta and the energy of the system are preserved, and this follows from 
relations (1.51, which can be written in the form 

{P) = {PO) - 0,Cp.I = (PO*) - (<A> + A,) = cl 

The following global laws of variation of momentum and energy hold for the system in toto: 

$=-ATfW+Q07 $=-AP+(Q*>+Q,+ 

dHldt=-AS+<N)+N,, AA=A(a)-A(b) 

P(f) = <P> + Pa7 PC 0) = <p*> + Pa', H(t) = <h> + lb@ 

where P is the vector of total generalized momenta of the system, P* is the total momentum 
of the wave, and H is the total energy of the system. 
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3. Let us consider a central impact of a material point on a bounded string at rest. 
Assuming that the transverse oscillations of the string are small, we shall write the density 
of its Lagrange's function in the form L =V,(p$ -NNy;')where p is the running density, N 
is the tension and u(x, t) is the transverse deflection of the string. We shall specify 
Lagrange's function for a point of mass m in the form ‘L = l/,m (rr + 110”). Here 2' and 4' are 
the velocity components of the point along the r and u axes respectively. 

By virtue of the symmetry of the problem, the point will not move along the string, i.e. 
2' (t) zz 0. We can write z(t) E 0, uo(0)= 0 without loss of generality. Using the first 
reiation of (1.11, the first relation of (1.2) and the second relation of (1.31, we arrive at 
equations describing the motion of the system at the time of contact 

puu - Nu, = 0. (3.1) 

u (-0, t) = u (+O, t) = ug (t), mu,,” = [NuJ 

Let us add to these equations the boundary and initial conditions 

u (-a, t) = 0, u (a, t) = 0, a > 0 

uo (0) = 0, uo’ (0) = --v 

1 0, XfO 
u(Go)=o, U*(GO)= _v x=o 

, 

(3.3) 

Using the integral Laplace transformation with respect to time /4/, we obtain the law 
of motion of the load 

Here r is dimensionless time, c is the velocity of propagation of the wave along the 
string, a is a dimensionless parameter characterizing the ratio of the masses of the string 
and the point, L, are the Laguerre polynomials and 8 is the Heaviside point function. 

Let us consider the problem of the time ta of the end of contact. 
is continuous everywhere; 

The function ~(2,:) 
we therefore have the relation {u(t,ta)) - 0, rE[--a, al which, 

in turn, yields the following relations: 

(4 (a @a) - 0, 1,)) = 0, {UX (2 (tS) -i- 0, tr)} = 0 

After the contact has ceased, the function u(z,t) will be twice continuously differen- 
tiable (except at the breaks on the characteristics), i.e. 

$T (z (II) + 0, t, f 0) - U, (I (tr) - 0, t, + 0) = 0 

This leads to the following condition: [u, (z,t, - 0)l = 0. Turning now to the third 
relation of (3.11, we obtain the following expression for determining the instant of termin- 
ationofthe contact 

uO" (tJ = 0 (3.4) 
From relations (3.3) and (3.4) it follows that the dimensionless time of termination of 

contact %a is the first positive root of the algebraic eguation 

P, (a. T) = * (L, (2ar - ‘tan) + L,_, pa7 - 4un)) 

The solid lines in the figure show the relation %(B). BeIO. 281 where 8 - i/a, obtained 
with help of a digital computer. The discontinuous form of this relation results from the 
discontinuity in the initial velocity of the string (3.21, which in turn was caused by the 
impact of the point against the string. The discontinuity in T,(B) occurs at the "critical" 
values of B., given by the equation 

and the magnitude of the discontinuity is found from the equation AT,,=%,,-Zn-2 where T,, 
is the root of the equation 
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The dashed lines depict the relation R(B) where R= Y,'(~,):Y is the so-called coefficient 
of restitution. When t>t., the separate motion of the objects is found by solving the 
equations 

PW - Nu,, = 0, u,"(t) = 0 

taking the relations (ft)= 0, {u;+.)= 0, (u,'}= 0 into account. 
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